Enhancing the Membranolytic Activity of Chenopodium quinoa Saponins by Fast Microwave Hydrolysis

Author:

Colson Emmanuel,Savarino Philippe,J.S. Claereboudt Emily,Cabrera-Barjas GustavoORCID,Deleu MagaliORCID,Lins LaurenceORCID,Eeckhaut Igor,Flammang PatrickORCID,Gerbaux PascalORCID

Abstract

Saponins are plant secondary metabolites. There are associated with defensive roles due to their cytotoxicity and are active against microorganisms. Saponins are frequently targeted to develop efficient drugs. Plant biomass containing saponins deserves sustained interest to develop high-added value applications. A key issue when considering the use of saponins for human healthcare is their toxicity that must be modulated before envisaging any biomedical application. This can only go through understanding the saponin-membrane interactions. Quinoa is abundantly consumed worldwide, but the quinoa husk is discarded due to its astringent taste associated with its saponin content. Here, we focus on the saponins of the quinoa husk extract (QE). We qualitatively and quantitively characterized the QE saponins using mass spectrometry. They are bidesmosidic molecules, with two oligosaccharidic chains appended on the aglycone with two different linkages; a glycosidic bond and an ester function. The latter can be hydrolyzed to prepare monodesmosidic molecules. The microwave-assisted hydrolysis reaction was optimized to produce monodesmosidic saponins. The membranolytic activity of the saponins was assayed based on their hemolytic activity that was shown to be drastically increased upon hydrolysis. In silico investigations confirmed that the monodesmosidic saponins interact preferentially with a model phospholipid bilayer, explaining the measured increased hemolytic activity.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference37 articles.

1. Chemistry and Biological Activities of Flavonoids: An Overview;Shaskank;Sci. World. J.,2013

2. A Review on the Alkaloids an Important Therapeutic Compound from Plants;Arpita;Int. J. Plant Biotechnol.,2017

3. Saponins as cytotoxic agents: a review

4. Role of glycosidases in the membranlytic, antifungal action of saponins

5. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3