Horse Chestnut Saponins–Escins, Isoescins, Transescins, and Desacylescins

Author:

Savarino Philippe1ORCID,Colson Emmanuel1,André Julien1,Gerbaux Pascal1ORCID

Affiliation:

1. Organic Synthesis and Mass Spectrometry Laboratory (S2MOs), University of Mons—UMONS, 23 Place du Parc, 7100 Mons, Belgium

Abstract

Escins constitute an abundant family of saponins (saponosides) and are the most active components in Aesculum hippocastanum (horse chestnut—HC) seeds. They are of great pharmaceutical interest as a short-term treatment for venous insufficiency. Numerous escin congeners (slightly different compositions), as well as numerous regio-and stereo-isomers, are extractable from HC seeds, making quality control trials mandatory, especially since the structure–activity relationship (SAR) of the escin molecules remains poorly described. In the present study, mass spectrometry, microwave activation, and hemolytic activity assays were used to characterize escin extracts (including a complete quantitative description of the escin congeners and isomers), modify the natural saponins (hydrolysis and transesterification) and measure their cytotoxicity (natural vs. modified escins). The aglycone ester groups characterizing the escin isomers were targeted. A complete quantitative analysis, isomer per isomer, of the weight content in the saponin extracts as well as in the seed dry powder is reported for the first time. An impressive 13% in weight of escins in the dry seeds was measured, confirming that the HC escins must be absolutely considered for high-added value applications, provided that their SAR is established. One of the objectives of this study was to contribute to this development by demonstrating that the aglycone ester functions are mandatory for the toxicity of the escin derivative, and that the cytotoxicity also depends on the relative position of the ester functions on the aglycone.

Funder

Fonds National pour la Recherche Scientifique

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3