Concentration Dependence of Anti- and Pro-Oxidant Activity of Polyphenols as Evaluated with a Light-Emitting Fe2+-Egta-H2O2 System

Author:

Nowak Michal,Tryniszewski Wieslaw,Sarniak Agata,Wlodarczyk Anna,Nowak Piotr J.ORCID,Nowak DariuszORCID

Abstract

Hydroxyl radical (•OH) scavenging and the regeneration of Fe2+ may inhibit or enhance peroxidative damage induced by a Fenton system, respectively. Plant polyphenols reveal the afore-mentioned activities, and their cumulative net effect may determine anti- or pro-oxidant actions. We investigated the influence of 17 phenolics on ultra-weak photon emission (UPE) from a modified Fenton system (92.6 µmol/L Fe2+, 185.2 µmol/L EGTA (ethylene glycol-bis(β-aminoethyl-ether)-N,N,N′,N,-tetraacetic acid) and 2.6 mmol/L H2O2 pH = 7.4). A total of 8 compounds inhibited (antioxidant effect), and 5 enhanced (pro-oxidant effect) UPE at all studied concentrations (5 to 50 µmol/L). A total of 4 compounds altered their activity from pro- to antioxidant (or vice versa) along with increasing concentrations. A total of 3 the most active of those (ferulic acid, chlorogenic acid and cyanidin 3-O-glucoside; mean UPE enhancement by 63%, 5% and 445% at 5 µmol/L; mean UPE inhibition by 28%, 94% and 24% at 50 µmol/L, respectively) contained catechol or methoxyphenol structures that are associated with effective •OH scavenging and Fe2+ regeneration. Most likely, these structures can determine the bidirectional, concentration-dependent activity of some phenolics under stable in vitro conditions. This is because the concentrations of the studied compounds are close to those occurring in human fluids, and this phenomenon should be considered in the case of dietary supplementation with isolated phenolics.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3