Abstract
The ability of organoselenium molecules to mimic the activity of the antioxidant selenoenzyme glutathione peroxidase (GPx) allows for their use as antioxidant or prooxidant modulators in several diseases associated with the disruption of the cell redox homeostasis. Current drug design in the field is partially based on specific modifications of the known Se-therapeutics aimed at achieving more selective bioactivity towards particular drug targets, accompanied by low toxicity as the therapeutic window for organoselenium compounds tends to be very narrow. Herein, we present a new group of Se-based antioxidants, structurally derived from the well-known group of GPx mimics—benzisoselenazol-3(2H)-ones. A series of N-substituted unsymmetrical phenylselenides with an o-amido function has been obtained by a newly developed procedure: a copper-catalyzed nucleophilic substitution by a Se-reagent formed in situ from diphenyl diselenide and sodium borohydride. All derivatives were tested as antioxidants and anticancer agents towards breast (MCF-7) and leukemia (HL-60) cancer cell lines. The highest H2O2-scavenging potential was observed for N-(3-methylbutyl)-2-(phenylselanyl)benzamide. The best antiproliferative activity was found for (−)-N-(1S,2R,4R)-menthyl-2-(phenylselanyl)benzamide (HL-60) and ((−)-N-(1S,2R,3S,6R)-(2-caranyl))benzamide (MCF-7). The structure–activity correlations, including the differences in reactivity of the obtained phenyl selenides and corresponding benzisoselenazol-3(2H)-ones, were performed.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献