Mass Spectrometric Fingerprint Mapping Reveals Species-Specific Differences in Plant Polyphenols and Related Bioactivities

Author:

Vanhakylä Suvi1ORCID,Salminen Juha-Pekka1ORCID

Affiliation:

1. Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland

Abstract

Plant species show large variation in the composition and content of their tannins and other polyphenols. These large metabolites are not easy to measure accurately, but they are important factors for species bioactivity and chemotaxonomy. Here, we used an automated group-specific UHPLC-DAD-MS/MS tool to detect and quantify eight most common polyphenol groups in 31 chemically diverse plant species representing many types of growth forms and evolutionary ages. Ten replicate plants were used for each species and two polyphenol-related bioactivities, i.e., protein precipitation capacity and oxidative activity were measured in all samples as well. By the help of a novel 2D fingerprint mapping tool we were able to visualize the qualitative and quantitative differences between the species in hydrolysable tannins (galloyl and hexahydroxydiphenoyl derivatives), proanthocyanidins (procyanidins and prodelphinidins), flavonols (kaempferol, quercetin and myricetin derivatives) and quinic acid derivatives together with the two bioactivities. The highest oxidative activities were found with species containing ellagitannins (e.g., Quercus robur, Geranium sylvaticum, Lythrum salicaria and Chamaenerion angustifolium) or prodelphinidin-rich proanthocyanidins (e.g., Ribes alpinum, Salix phylicifolia and Lysimachia vulgaris). The best species with high protein precipitation capacity were rich in gallotannins (Acer platanoides and Paeonia lactiflora) or oligomeric ellagitannins (e.g., Comarum palustre, Lythrum salicaria and Chamaenerion angustifolium). These types of tools could prove their use in many types of screening experiments and might reveal even unusually active polyphenol types directly from the crude plant extracts.

Funder

Academy of Finland

Finnish Cultural Foundation

Vilho, Yrjö and Kalle Väisälä Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3