Modified Technogenic Asphaltenes as Enhancers of the Thermal Conductivity of Paraffin

Author:

Gorbacheva Svetlana N.,Borisova Yulia Yu.ORCID,Makarova Veronika V.ORCID,Antonov Sergey V.ORCID,Borisov Dmitry N.ORCID,Yakubov Makhmut R.ORCID

Abstract

The low thermal conductivity of paraffin and other organic phase change materials limits their use in thermal energy storage devices. The introduction of components with a high thermal conductivity such as graphene into these materials leads to an increase in their thermal conductivity. In this work, we studied the use of inexpensive carbon fillers containing a polycyclic aromatic core, due to them having a structural similarity with graphene, to increase the thermal conductivity of paraffin. As such fillers, technogenic asphaltenes isolated from ethylene tar and their modified derivatives were used. It is shown that the optimal concentration of carbon fillers in the paraffin composite, which contributes to the formation of a structural framework and resistance to sedimentation, is 5 and 30 wt. %, while intermediate concentrations are ineffective, apparently due to the formation of large aggregates, the concentration of which is insufficient to form a strong framework. It has been found that the addition of asphaltenes modified with ammonium persulfate in acetic acid significantly increases the thermal conductivity of paraffin by up to 72%.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference42 articles.

1. Organic phase change materials and their textile applications: An overview;Sarier;Thermochim. Acta,2012

2. Preparation and thermophysical property analysis of nanocomposite phase change materials for energy storage;Wang;Renew. Sustain. Energy Rev.,2021

3. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes;Karaipekli;Energy Convers. Manag.,2017

4. Preparation and effective thermal conductivity of a Paraffin/Metal Foam composite;Karkri;J. Energy Storage,2021

5. Thermal conductivity enhancement by using nano-material in phase change material for latent heat thermal energy storage systems;Chaichan;Saussurea,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3