Mesoscale computer modeling of asphaltene aggregation in liquid paraffin

Author:

Gurtovenko Andrey A.1ORCID,Nazarychev Victor M.1ORCID,Glova Artem D.2ORCID,Larin Sergey V.1ORCID,Lyulin Sergey V.1ORCID

Affiliation:

1. Institute of Macromolecular Compounds, Russian Academy of Sciences 1 , Bolshoi Prospect V.O. 31, St. Petersburg 199004, Russia

2. Department of Physics and Astronomy, The University of Western Ontario 2 , 1151 Richmond Street, London, Ontario N6A 3K7, Canada

Abstract

Asphaltenes represent a novel class of carbon nanofillers that are of potential interest for many applications, including polymer nanocomposites, solar cells, and domestic heat storage devices. In this work, we developed a realistic coarse-grained Martini model that was refined against the thermodynamic data extracted from atomistic simulations. This allowed us to explore the aggregation behavior of thousands of asphaltene molecules in liquid paraffin on a microsecond time scale. Our computational findings show that native asphaltenes with aliphatic side groups form small clusters that are uniformly distributed in paraffin. The chemical modification of asphaltenes via cutting off their aliphatic periphery changes their aggregation behavior: modified asphaltenes form extended stacks whose size increases with asphaltene concentration. At a certain large concentration (44 mol. %), the stacks of modified asphaltenes partly overlap, leading to the formation of large, disordered super-aggregates. Importantly, the size of such super-aggregates increases with the simulation box due to phase separation in the paraffin–asphaltene system. The mobility of native asphaltenes is systematically lower than that of their modified counterparts since the aliphatic side groups mix with paraffin chains, slowing down the diffusion of native asphaltenes. We also show that diffusion coefficients of asphaltenes are not very sensitive to the system size: enlarging the simulation box results in some increase in diffusion coefficients, with the effect being less pronounced at high asphaltene concentrations. Overall, our findings provide valuable insight into the aggregation behavior of asphaltenes on spatial and time scales that are normally beyond the scales accessible for atomistic simulations.

Funder

Russian Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3