Opening a Band Gap in Biphenylene Monolayer via Strain: A First-Principles Study

Author:

Hou Yinlong1,Ren Kai2ORCID,Wei Yu1,Yang Dan1,Cui Zhen3,Wang Ke1

Affiliation:

1. School of Automation, Xi’an University of Posts & Telecommunications, Xi’an 710121, China

2. School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210042, China

3. School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China

Abstract

A biphenylene network is a novel 2D allotropy of carbon with periodic 4-6-8 rings, which was synthesized successfully in 2021. In recent years, although the mechanical properties and thermal transport received a lot of research attention, how to open the Dirac cone in the band structure of a biphenylene network is still a confused question. In this work, we utilized uniaxial and biaxial lattice strains to manipulate the electronic properties and phonon frequencies of biphenylene, and we found an indirect band gap under 10% biaxial strain through the first-principles calculations. This indirect band gap is caused by the competition between the band-edge state A and the Dirac cone for the conduction band minimum (CBM). Additionally, the lightest carrier’s effective mass in biphenylene is 0.184 m0 for electrons along x (Γ→X) direction, while the effective mass for holes shows a remarkable anisotropy, suggesting the holes in the tensile biphenylene monolayer are confined within a one-dimensional chain along x direction. For phonon dispersion, we discovered that the Raman-active Ag3 phonon mode shows a robust single phonon mode character under both compressive and tensile strain, but its frequency is sensitive to lattice strain, suggesting the lattice strain in biphenylene can be identified by Raman spectroscopy

Funder

Shaanxi Provincial Department of Education Project

National Natural Science Foundation of China

Shaanxi Provincial Department of Science and Technology project

Natural Science Foundation of Jiangsu

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3