Ferroelectric polarization reversals in C2N/α-In2Se3 van der Waals heterostructures: a conversion from the traditional type-II to S-scheme

Author:

Zhong Yongle

Abstract

Introduction: Ferroelectric substances, characterized by inherent spontaneous polarization, can boost photocatalytic efficiency by facilitating the separation of photogenerated carriers. However, conventional photocatalysts with perovskite-class ferroelectricity are generally constrained by their 3D arrangement, leading to less accessible active sites for catalysis and a smaller specific surface area compared to a 2D layout.Methods: In my research, I developed a 2D ferroelectric heterostructure consisting of C2N/α-In2Se3. I performed first-principle calculations on the 2D C2N/α-In2Se3 heterostructure, specifically varying the out-of-plane ferroelectric polarization directions. I primarily focused on C2N/α-In2Se3 (I) and C2N/α-In2Se3 (II) heterostructures.Results: My findings revealed that reversing the ferroelectric polarization of the 2D α-In2Se3 layer in the heterostructures led to a transition from the conventional type-II [C2N/α-In2Se3 (I)] to an S-scheme [C2N/α-In2Se3 (II)]. The S-scheme heterostructure [C2N/α-In2Se3 (II)] demonstrated a high optical absorption rate of 17% in visible light, marking it as a promising photocatalytic material.Discussion: This research underscores the significance of ferroelectric polarization in facilitating charge transfer within heterogeneous structures. It provides a theoretical perspective for developing enhanced S-scheme photocatalysts, highlighting the potential of 2D ferroelectric heterostructures in photocatalytic applications.

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3