Bis(oxiranes) Containing Cyclooctane Core: Synthesis and Reactivity towards NaN3

Author:

Sedenkova Kseniya N.,Ryzhikova Olga V.,Stepanova Svetlana A.ORCID,Averin Alexei D.,Kositov Sergei V.,Grishin Yuri K.,Gloriozov Igor P.,Averina Elena B.

Abstract

Reactions of oxirane ring opening provide a powerful tool for regio- and stereoselective synthesis of polyfunctional and heterocyclic compounds, widely used in organic chemistry and drug design. Cyclooctane, alongside other medium-sized rings, is of interest as a novel molecular platform for the construction of target-oriented leads. Additionally, cyclooctane derivatives are well known to be prone to transannular reactions, which makes them a promising object in the search for novel approaches to polycyclic structures. In the present work, a series of cyclooctanediones was studied in Corey-Chaykovsky reactions, and novel spirocyclic bis(oxiranes) containing cyclooctane core, namely, 1,5-dioxadispiro[2.0.2.6]dodecane and 1,8-dioxadispiro[2.3.2.3]dodecane, were synthesized. Ring opening of the obtained bis(oxiranes) upon treatment with sodium azide was investigated, and it was found that the reaction path is determined by the reciprocal orientation of oxygen atoms in the oxirane moieties. Diastereomers of the bis(oxiranes) with cis-orientation underwent independent ring opening, supplying corresponding diazidodiols, while in the case of stereoisomers with trans-orientation, domino-like reactions occurred, including intramolecular nucleophilic attack and the formation of a novel three- or six-membered O-containing ring. Summarily, a straightforward approach to polyfunctional compounds containing cyclooctane or oxabicyclo[3.3.1]nonane cores, employing bis(oxiranes), was elaborated.

Funder

The Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3