On the Nature of the Partial Covalent Bond between Noble Gas Elements and Noble Metal Atoms

Author:

Pal Ranita1ORCID,Chattaraj Pratim Kumar2ORCID

Affiliation:

1. Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302, India

2. Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India

Abstract

This article provides a discussion on the nature of bonding between noble gases (Ng) and noble metals (M) from a quantum chemical perspective by investigating compounds such as NgMY (Y=CN, O, NO3, SO4, CO3), [NgM−(bipy)]+, NgMCCH, and MCCNgH complexes, where M=Cu, Ag, Au and Ng=Kr−Rn, with some complexes containing the lighter noble gas atoms as well. Despite having very low chemical reactivity, noble gases have been observed to form weak bonds with noble metals such as copper, gold, and silver. In this study, we explore the factors that contribute to this unusual bonding behavior, including the electronic structure of the atoms involved and the geometric configuration of the concerned fragments. We also investigate the metastable nature of the resulting complexes by studying the energetics of their possible dissociation and internal isomerization channels. The noble gas-binding ability of the bare metal cyanides are higher than most of their bromide counterparts, with CuCN and AgCN showing higher affinity than their chloride analogues as well. In contrast, the oxides seem to have lower binding power than their corresponding halides. In the oxide and the bipyridyl complexes, the Ng-binding ability follows the order Au > Cu > Ag. The dissociation energies calculated, considering the zero-point energy correction for possible dissociation channels, increase as we move down the noble gas group. The bond between the noble gases and the noble metals in the complexes are found to have comparable weightage of orbital and electrostatic interactions, suggestive of a partial covalent nature. The same is validated from the topological analysis of electron density.

Funder

Department of Science and Technology (DST), New Delhi

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3