Nature of partial sigma bond

Author:

Nguyen Lam H.123ORCID,Truong Thanh N.4ORCID

Affiliation:

1. Faculty of Chemistry University of Science Ho Chi Minh City Vietnam

2. Vietnam National University Ho Chi Minh City Vietnam

3. Institute for Computational Science and Technology Ho Chi Minh City Vietnam

4. Department of Chemistry University of Utah Salt Lake City Utah USA

Abstract

AbstractThis study investigates the formation of partial sigma (σ) covalent bonds in experimentally synthesizable biradicals formed from hydrogenated and fluorinated C8, C20, and C60 cage structures, by assessing their stability, geometry, and bonding character in singlet and triplet states using restricted B3LYP‐D3/6–31+G(d,p) theory, natural bond orbital (NBO) analysis, and complete active space self‐consistent field (CASSCF) method. The results show that these partial σCC bonds have Wiberg bond orders of 0.38 to 0.48 and bond lengths ranging from 2.62 Å to 5.93 Å. Cage size influences the characteristics of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), with electrons favoring more antibonding orbitals in smaller cages where electrons reside more on the exterior of the cage and favoring bonding orbitals in larger ones where electrons are more in the interior. Fluorination enhances electron density on bonding orbitals. The analysis further clarified that the differentiation between antibonding and bonding features of HOMOs and LUMOs extends beyond merely electron transfer from s‐ to p‐atomic orbitals, also noting possible interactions of the same symmetry repel. The study also introduces hyperconjugation from α‐position CH bonds as a factor in stabilizing partial σ‐bond formation. The results also caution against the use of broken symmetry methodology in unrestricted SCF wavefunctions for biradicals, such as those in this study as it may cause large spin contamination and thus errors in the calculated electronic properties results.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3