Abstract
In January 2014, over 10,000 gallons of methyl-cyclohexane methanol (MCHM) leaked into the Elk River in West Virginia, in a chemical spill incident that contaminated a large portion of the state’s water supply and left over 300,000 residents without clean water for many days and weeks. Initial efforts to remove MCHM at the treatment plant centered on the use of granulated activated carbon (GAC), which removed some of the chemical from the water, but MCHM levels were not lowered to a “non-detect” status until well after the chemical plume had moved downstream of the intake. Months later, MCHM was again detected at the outflow (but not the inflow) at the water treatment facility, necessitating the full and costly replacement of all GAC in the facility. The purpose of this study is to investigate the hypothesis that preferential absorbance of one of the two MCHM isomers, coupled with seasonal variations in water temperature, explain this contrary observation. Calculated intermolecular potentials between ovalene (a large planar polycyclic aromatic hydrocarbon) and the MCHM isomers were compared to physisorption potentials of MCHM onto an amorphous carbon model. While a molecular mechanics (MM) force field predicts no difference in the average interaction potentials between the cis- and trans-MCHM with the planar ovalene structure, MM predicts that the trans isomer binds stronger than the cis isomer to the amorphous carbon surface. Semi-empirical and density functional theory also predict stronger binding of trans-MCHM on both the planar and amorphous surfaces. The differences in the isomer binding strengths on amorphous carbon imply preferential absorbance of the trans isomer onto activated charcoal filter media. Considering seasonal water temperatures, simple Arrhenius kinetics arguments based on these predicted binding energies help explain the environmental observations of MCHM leeching from the GAC filters months after the spill. Overall, this work shows the important implications that can arise from detailed interfacial chemistry investigations.
Funder
National Science Foundation
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献