Abstract
Contemplating what will unfold in this new decade and those after, it is not difficult to imagine the increasing importance of conservation and protection of clean water supplies. A worrying but predictable offshoot of humanity’s technological advances is the seemingly ever-increasing chemical load burdening our waterways. In this perspective are presented a few modest areas where computational chemistry modelling could provide benefit to these efforts by harnessing the continually improving computational power available to the field. In the acute event of a chemical spill incident, true quantum-chemistry-based predictions of physicochemical properties and surface-binding behaviors can be used to help decision making in remediating the spill threat. The chronic burdens of microplastics and perfluorinated “forever chemicals” can also be addressed with computational modelling to fill the gap between feasible laboratory experiment timescales and the much-longer material lifetimes. For all of these systems, field-level accuracy models will avail themselves as the model computational systems are able to incorporate more realistic features that are relevant to water quality issues.
Funder
National Science Foundation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献