Abstract
Estimation using a suboptimal method can lead to imprecise models, with cascading effects in complex models, such as climate change or pollution. The goal of this study is to compare the solutions supplied by different algorithms used to model ozone pollution. Using Box and Tiao (1975) study, we have predicted ozone concentration in Los Angeles with an ARIMA and an autoregressive process. We have solved the ARIMA process with three algorithms (i.e., maximum likelihood, like Box and Tiao, conditional least square and unconditional least square) and the autoregressive process with four algorithms (i.e., Yule–Walker, iterative Yule–Walker, maximum likelihood, and unconditional least square). Our study shows that Box and Tiao chose the appropriate algorithm according to the AIC but not according to the mean square error. Furthermore, Yule–Walker, which is the default algorithm in many software, has the least reliable results, suggesting that the method of solving complex models could alter the findings. Finally, the model selection depends on the technical details and on the applicability of the model, as the ARIMA model is suitable from the AIC perspective but an autoregressive model could be preferred from the mean square error viewpoint. Our study shows that time series analysis should consider not only the model shape but also the model estimation, to ensure valid results.
Reference44 articles.
1. Enquiries Concerning the Human Understanding: And Concerning the Principles of Morals;Hume,1902
2. An Essay Concerning Human Understanding: And a Treatise on the Conduct of the Understanding;Locke,1860
3. Statistical Methods for Research Workers;Fisher,1925
4. X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling
5. R: A Language and Environment for Statistical Computing,2016
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献