Estimation of Surface Canopy Water in Pacific Northwest Forests by Fusing Radar, Lidar, and Meteorological Data

Author:

Heffernan Scott,Strimbu Bogdan MORCID

Abstract

Surface Canopy Water (SCW) is the intercepted rain water that resides within the tree canopy and plays a significant role in the hydrological cycle. Challenges arise in measuring SCW in remote areas using traditional ground-based techniques. Remote sensing in the radio spectrum has the potential to overcome the challenges where traditional modelling approaches face difficulties. In this study, we aim at estimating the SCW by fusing information extracted from the radar imagery acquired with the Sentinel-1 constellation, aerial laser scanning, and meteorological data. To describe the change of radar backscatter with moisture, we focused on six forest stands in the H.J. Andrews experimental forest in central Oregon, as well as four clear cut areas and one golf course, over the summers of 2015–2017. We found significant relationships when we executed the analysis on radar images in which individual tree crowns were delineated from lidar, as opposed to SCW estimated from individual pixel backscatter. Significant differences occur in the mean backscatter between radar images taken during rain vs. dry periods (no rain for >1 h), but these effects only last for roughly 30 min after the end of a rain event. We developed a predictive model for SCW using the radar images acquired at dawn, and proved the capability of space-based radar systems to provide information for estimation of the canopy moisture under conditions of fresh rainfall during the dry season.

Funder

U.S. Department of Agriculture

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3