Parameter-Efficient Fine-Tuning Method for Task-Oriented Dialogue Systems

Author:

Mo Yunho1ORCID,Yoo Joon1ORCID,Kang Sangwoo1ORCID

Affiliation:

1. School of Computing, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea

Abstract

The use of Transformer-based pre-trained language models has become prevalent in enhancing the performance of task-oriented dialogue systems. These models, which are pre-trained on large text data to grasp the language syntax and semantics, fine-tune the entire parameter set according to a specific task. However, as the scale of the pre-trained language model increases, several challenges arise during the fine-tuning process. For example, the training time escalates as the model scale grows, since the complete parameter set needs to be trained. Furthermore, additional storage space is required to accommodate the larger model size. To address these challenges, we propose a new new task-oriented dialogue system called PEFTTOD. Our proposal leverages a method called the Parameter-Efficient Fine-Tuning method (PEFT), which incorporates an Adapter Layer and prefix tuning into the pre-trained language model. It significantly reduces the overall parameter count used during training and efficiently transfers the dialogue knowledge. We evaluated the performance of PEFTTOD on the Multi-WOZ 2.0 dataset, a benchmark dataset commonly used in task-oriented dialogue systems. Compared to the traditional method, PEFTTOD utilizes only about 4% of the parameters for training, resulting in a 4% improvement in the combined score compared to the existing T5-based baseline. Moreover, PEFTTOD achieved an efficiency gain by reducing the training time by 20% and saving up to 95% of the required storage space.

Funder

National Research Foundation of Korea

Gachon University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3