Enhancing Task-Oriented Dialogue Modeling through Coreference-Enhanced Contrastive Pre-Training

Author:

Huang Yi1ORCID,Chen Si1,Chen Yaqin1,Feng Junlan1,Deng Chao1

Affiliation:

1. JIUTIAN Team, China Mobile Research Institute, Beijing 100053, China

Abstract

Pre-trained language models (PLMs) are proficient at understanding context in plain text but often struggle with the nuanced linguistics of task-oriented dialogues. The information exchanges in dialogues and the dynamic role-shifting of speakers contribute to complex coreference and interlinking phenomena across multi-turn interactions. To address these challenges, we propose Coreference-Enhanced Contrastive Pre-training (CECPT), an innovative pre-training framework specifically designed to enhance dialogue modeling. CECPT utilizes unsupervised dialogue datasets to capture both semantic richness and structural coherence. Our experimental results demonstrate that the CECPT model significantly outperforms established baselines in three critical applications: intent recognition, dialogue act prediction, and dialogue state tracking. These findings suggest that CECPT is more adept at following the information flow within dialogues and accurately linking statuses to their respective references.

Funder

Beijing Natural Science Foundation

National Key R&D Program of China

China Mobile Holistic Artificial Intelligence Major Project Funding

Publisher

MDPI AG

Reference36 articles.

1. Wang, H., Wang, L., Du, Y., Chen, L., Zhou, J., Wang, Y., and Wong, K.F. (2023). A survey of the evolution of language model-based dialogue systems. arXiv.

2. Yang, X., Sheng, X., and Gu, J. (2023, January 6–8). A Task-Oriented Multi-turn Dialogue Mechanism for the Smart Cockpit. Proceedings of the Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data, Wuhan, China.

3. Leveraging Transformer-based Pretrained Language model for Task-oriented dialogue system;Thakkar;Int. J. Comput.,2023

4. Yi, Z., Ouyang, J., Liu, Y., Liao, T., Xu, Z., and Shen, Y. (2024). A Survey on Recent Advances in LLM-Based Multi-turn Dialogue Systems. arXiv.

5. Recent advances in deep learning based dialogue systems: A systematic survey;Ni;Artif. Intell. Rev.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3