Characterization of Polyvinyl Alcohol (PVA)/Polyacrylic Acid (PAA) Composite Film-Forming Solutions and Resulting Films as Affected by Beeswax Content

Author:

Lim Woo Su1,Kim Min Ha1,Park Hyun Jin1,Lee Min Hyeock2ORCID

Affiliation:

1. Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea

2. Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea

Abstract

Recently, the food packaging industry has focused on developing an eco-friendly and sustainable food packaging system. This study describes the effect of beeswax on the physical, structural, and barrier properties of a polyvinyl alcohol (PVA)/polyacrylic acid (PAA) composite film. The incorporation of beeswax improved the barrier properties against oxygen, water, and oil. However, the addition of a high content of beeswax caused phase separation in the film-forming solution. The destabilization mechanisms such as clarification and creaming formation in the film-forming solution were revealed by turbidimetric analysis. The results of scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) indicates that non-homogeneous structures in the film-forming solution were formed as a function of increased beeswax content due to the agglomeration of beeswax. The mechanical properties of the films were also evaluated to determine the most appropriate content of beeswax. There was a slight decrease in tensile strength and an increase in elongation as beeswax content increased up to 10%. Thus, the PVA/PAA composite film with 10% beeswax was chosen for further applications. In summary, the PVA/PAA composite film developed in this study with 10% beeswax exhibited a significant improvement in barrier properties and has the potential for use in commerce.

Funder

Kyung Hee University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3