Erythrosine–Dialdehyde Cellulose Nanocrystal Coatings for Antibacterial Paper Packaging

Author:

Shi Shih-Chen1ORCID,Ouyang Sing-Wei1,Rahmadiawan Dieter12ORCID

Affiliation:

1. Department of Mechanical Engineering, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan

2. Department of Mechanical Engineering, Universitas Negeri Padang, Padang 25173, Indonesia

Abstract

Though paper is an environmentally friendly alternative to plastic as a packaging material, it lacks antibacterial properties, and some papers have a low resistance to oil or water. In this study, a multifunctional paper-coating material was developed to reduce the use of plastic packaging and enhance paper performance. Natural cellulose nanocrystals (CNCs) with excellent properties were used as the base material for the coating. The CNCs were functionalized into dialdehyde CNCs (DACNCs) through periodate oxidation. The DACNCs were subsequently complexed using erythrosine as a photosensitizer to form an erythrosine–CNC composite (Ery-DACNCs) with photodynamic inactivation. The Ery-DACNCs achieved inactivations above 90% after 30 min of green light irradiation and above 85% after 60 min of white light irradiation (to simulate real-world lighting conditions), indicating photodynamic inactivation effects. The optimal parameters for a layer-by-layer dip coating of kraft paper with Ery-DACNCs were 4.5-wt% Ery-DACNCs and 15 coating layers. Compared to non-coated kraft paper and polyethylene-coated paper, the Ery-DACNC-coated paper exhibited enhanced mechanical properties (an increase of 28% in bursting strength). More than 90% of the bacteria were inactivated after 40 min of green light irradiation, and more than 80% were inactivated after 60 min of white light irradiation.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3