Amorphous Elastomeric Ultra-High Molar Mass Polypropylene in High Yield by Half-Titanocene Catalysts

Author:

Losio Simona1ORCID,Bertini Fabio1ORCID,Vignali Adriano1ORCID,Fujioka Taiga2,Nomura Kotohiro2ORCID,Tritto Incoronata1ORCID

Affiliation:

1. Institute for Chemical Sciences and Technologies “G. Natta” National Research Council, Via A. Corti 12, 20133 Milan, Italy

2. Department of Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan

Abstract

Propylene polymerizations with different ketimide-modified half-titanocene catalysts, Cp’TiCl2(N=CtBu2) [Cp’ = C5H5 (1), C5Me5 (2), Me3SiC5H4 (3)], with MAO as a cocatalyst, were investigated. The obtained polymers were studied in detail by determining their microstructure, molar masses, thermal, and mechanical properties. The Cp*-ketimide, (C5Me5)TiCl2(N=CtBu2) (2), exhibited higher catalytic activities than Cp’TiCl2(N=CtBu2) (1,3), yielding higher molar mass polymers, Mw up to 1400 Kg/mol. All the synthesized polypropylenes (PP) are atactic and highly regioregular, with predominant rrrr pentads, especially PP prepared with catalyst 1. Differential scanning calorimetry (DSC) established that the polymers are fully amorphous aPP, and no melting endotherm events are detected. Glass transition temperatures were detected between −2 and 2 °C. These polypropylenes have been established to be high-performance thermoplastic elastomers endowed with remarkably high ductility, and a tensile strain at break higher than 2000%.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3