Synthesis of High-Molecular-Weight Polypropylene Elastomer by Propylene Polymerization Using α-Diimine Nickel Catalysts

Author:

Gao Lujie1,Ren Hegang2,Hou Yanhui3,Ye Linlin1,Meng Hao3,Liu Binyuan1,Yang Min1

Affiliation:

1. Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300401, China

2. School of Material Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China

3. State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300160, China

Abstract

The α-diimine late transition metal catalyst represents a new strategy for the synthesis of atactic polypropylene elastomer. Taking into account the properties of the material, enhancing the molecular weight of polypropylene at an elevated temperature through modifying the catalyst structure, and further increasing the activity of α-diimine catalyst for propylene polymerization, are urgent problems to be solved. In this work, two α-diimine nickel(II) catalysts with multiple hydroxymethyl phenyl substituents were synthesized and used for propylene homopolymerization. The maximum catalytic activity was 5.40 × 105 gPP/molNi·h, and the activity was still maintained above 105 gPP/molNi·h at 50 °C. The large steric hindrance of catalysts inhibited the chain-walking and chain-transfer reactions, resulting in polypropylene with high molecular weights (407~1101 kg/mol) and low 1,3-enchainment content (3.57~16.96%) in toluene. The low tensile strength (0.3~1.0 MPa), high elongation at break (218~403%) and strain recovery properties (S.R. ~50%, 10 tension cycles) of the resulting polypropylenes, as well as the visible light transmittance of approximately 90%, indicate the characteristics of the transparent elastomer.

Funder

National Natural Science Foundation of China

Talent projects of Guangdong University of Petrochemical Technology

Innovation Team Program of Guangdong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3