Exploring the Effects of Nano-CaCO3 on the Core–Shell Structure and Properties of HDPE/POE/Nano-CaCO3 Ternary Nanocomposites

Author:

Liu Wei1ORCID,Wang Lumin1,Zhang Xun1,Huang Hongliang1,Liu Yongli1,Min Minghua12

Affiliation:

1. Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China

2. Qingdao Marine Science and Technology Center, Qingdao 266237, China

Abstract

To address the dilemma of the stiffness and toughness properties of high-density polyethylene (HDPE) composites, titanate coupling agent-treated CaCO3 nanoparticles (nano-CaCO3) and ethylene–octene copolymer (POE) were utilized to blend with HDPE to prepare ternary nanocomposites via a two-sequence-step process. Meanwhile, a one-step process was also studied as a control. The obtained ternary nanocomposites were characterized by scanning electron microscopy (SEM), Advanced Rheometrics Expansion System (ARES), Dynamic Mechanical Analysis (DMA), wide-angle X-ray diffraction analysis (WXRD), and mechanical test. The SEM results showed one or two CaCO3 nanoparticles were well-encapsulated by POE and were uniformly dispersed into the HDPE matrix to form a core–shell structure of 100–200 nm in size by the two-step process, while CaCO3 nanoparticles were aggregated in the HDPE matrix by the one-step method. The result of the XRD showed that the nano-CaCO3 particle played a role in promoting crystallization in HDPE nanocomposites. Mechanical tests showed that the synergistic effect of both the POE elastomer and CaCO3 nanoparticles should account for the balanced performance of the ternary composites. In comparison with neat HDPE, the notched impact toughness of the ternary nanocomposites of HDPE/POE/nano-CaCO3 was significantly increased. In addition, the core–shell structure absorbed the fracture impact energy and prevent further propagation of micro-cracks, thus obtaining a higher notched Izod impact strength.

Funder

Marine S&T Fund of Shandong Province for Qingdao Marine Science and Technology Center

Central Public-interest Scientific Institution Basal Research Fund, ECSFR, CAFS

National Key Research and Development Program of China

Special Fund for Science and Technology Development in Zhanjiang City, Guangdong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3