Overprinting of TPU onto PA6 Substrates: The Influences of the Interfacial Area, Surface Roughness and Processing Parameters on the Adhesion between Components

Author:

Slapnik Janez1ORCID,Lorber Rebeka1,Pulko Irena1ORCID,Huskić Miroslav1ORCID,Črešnar Klementina Pušnik1

Affiliation:

1. Faculty of Polymer Technology, Ozare 19, 2380 Slovenj Gradec, Slovenia

Abstract

The hybridisation of injection moulding (IM) and additive manufacturing (AM) offers the opportunity to combine the high productivity of IM and the high flexibility of AM into a single process. IM parts can be overprinted through fused filament fabrication (FFF) to allow for the customisation of parts or to add new functionalities. However, the right material pair must be chosen, and processing parameters must be optimised to achieve suitable adhesion between the components. The present study dealt with the investigation of the influence of the interfacial area, substrate surface roughness and overprinting processing parameters on the adhesion between the polyamide 6 (PA6) substrate and thermoplastic polyurethane (TPU) rib overprinted via FFF. PA6 substrates were produced through the IM of plates into a mould with different textures to obtain substrates with three different surface roughnesses. The ribs with varied interfacial areas were overprinted onto produced substrates using a desktop FFF 3D printer. To study the effect of overprinting processing parameters, the ribs were overprinted under varying printing and substrate temperatures and printing speeds according to the Box–Behnken design of experiments (DoE). The chemical composition and thermal properties of used materials were determined via attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The surface properties of prepared substrates were studied via digital optical microscopy (OM), through surface roughness measurements using a confocal microscope, through contact angle (CA) measurements and through the determination of free surface energy (SFE). The adhesion between the components was determined by evaluating the tear-off strength using a universal testing machine (UTM). With an increasing interfacial area, the tear-off strength decreased, while substrate surface roughness had no statistically significant effect. Overprinting parameters influenced the tear-off strength in the order of printing speed > printing temperature > substrate temperature. High values of tear-off strength were found for the lowest printing speed, while there were no important differences found between the middle and upper values. With increasing printing and substrate temperatures, the tear-off strength increased linearly. The highest value of tear-off strength (0.84 MPa) was observed at a printing temperature, substrate temperature and printing speed of 250 °C, 80 °C and 2 mm/s, respectively.

Funder

European Union, within the Horizon Europe Framework Programme and Twinning

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3