An Intrinsically Transparent Polyamide Film with Superior Toughness and Great Optical Performance

Author:

Li Jianlin12,Yi Yong12,Wang Chunhua12ORCID,Lu Weijian12,Liao Mingxi12,Jing Xin12ORCID,Wang Wenzhi12

Affiliation:

1. National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China

2. Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China

Abstract

Polyamide 66 was extensively utilized in various applications contributed by its excellent mechanical performance and outstanding durability. However, its high crystallinity renders it to have low transparency, which seriously limits its application in optical devices. Herein, a highly transparent polyamide (PA) 66-based copolymer was reported using 4,4′-diaminodicyclohexylmethane (PACM), adipic acid, and polyamide 66 salt as the reaction monomers. Wide-angle X-ray diffraction (WAXD) analysis revealed that the crystal phase of the synthesized PA66/PACM6 displayed a clear transition from α to γ as the PACM6 increased accompanied by a decreased intensity in the diffraction peak of the copolymer, whose transmittance was successfully adjusted reaching as high as 92.5% (at 550 nm) when the PACM6 was 40 wt%. Moreover, the copolymer with a higher content of PACM6 exhibited larger toughness. On the other hand, the biaxially oriented films of PA66/PACM6 (20 wt%) were also prepared, and it was found that the transparency of the PA66/PACM6 copolymer could be further enhanced via adjusting the stretching ratio of the film. Furthermore, the mechanical strength of the biaxially oriented PA66/PACM6 was also improved with the increase in the orientation degree in the stretching process, indicating that the physical properties of the transparent PA66 were significantly influenced by its alicyclic structure, and the introduction of PACM into PA66 was capable of effectively improving the optical and crystalline characteristics of PA66, revealing that the synthetic strategy has great potential for guiding the design and development of transparent polyamide materials.

Funder

Natural Research Science Foundation of Hunan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3