Assessment of Soil Salinization Risk by Remote Sensing-Based Ecological Index (RSEI) in the Bosten Lake Watershed, Xinjiang in Northwest China

Author:

Hou Jiawen,Rusuli Yusufujiang

Abstract

Accurate real-time information about the spatial and temporal dynamics of soil salinization is crucial for preventing the aggravation of salinization and achieving sustainable development of the ecological environment. With the Bosten Lake watershed as the study area, in this study, the regional risk factors of soil salinization were identified, the salinization information was extracted, and the remote sensing-based ecological index (RSEI) of soil salinization was assessed through the combined use of remote sensing (RS) and geographic information system (GIS) techniques and measurements of soils samples collected from various field sites. The results revealed that (1) a four period (1990, 2000, 2010, and 2020) RS dataset on soil salinization allowed for the accurate classification of the land use/land cover types, with an overall classification accuracy of greater than 90% and kappa values of >0.90, and the salt index (SI), an RS-derived risk factor of soil salinization, was significantly correlated with the actual measured salt content of the surface soils. (2) The RS-derived elevation and normalized difference vegetation index (NDVI) were significantly correlated with the SI-T. (3) An integrated risk assessment model was constructed for the soil salinization risk in the Bosten Lake watershed, which calculated the integrated risk index values and classified them into four risk levels: low risk, medium risk, high risk, and extremely high risk. (4) Due to the combined effect of the surface water area and terrain, the soil salinization risk gradually decreased from the lake to the surrounding areas, while the corresponding spatial range increased in order of decreasing risk. The areas with different levels of soil salinization risk in the study area during the last 30 years were ranked in decreasing order of medium risk > high risk > extremely high risk > low risk. These findings provide theoretical support for preventing and controlling soil salinization and promoting agricultural production in the study area.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3