Abstract
Objective: To investigate the effect of nitrogen reduction combined with organic materials on crop growth of winter rapeseed and maize rotation in yellow soil. Methods: A 2-year, four-season winter rapeseed and maize rotation experiment using three organic materials (biochar (B), commercial organic fertilizer (O) and straw (S), 3000 kg·hm−2) and three nitrogen application rates (100%, 85% and 70%) was carried out from 2018 to 2020 in Guizhou Province, China. By comprehensively analyzing the crop yield, biomass and nutrient absorption, soil nutrients indicators, and the efficiency of nitrogen fertilizer was calculated. Results: All organic materials could increase the yield of both crops, and 100% N + O treatment was the best, and the 2-year winter rapeseed and maize yields reached 3069 kg·hm−2, 3215 kg·hm−2 and 11,802 kg·hm−2, 11,912 kg·hm−2, respectively. When nitrogen application was reduced by 15%, the addition of the three organic materials could stabilize or increase the yield and biomass, and nitrogen, phosphorus and potassium absorption in both crops showed an increasing trend, which could improve or maintain soil nutrients. When nitrogen application was reduced by 30%, the yields of two crops with organic materials addition were lower than those of 100% N treatment. Through the interaction, it was found that nitrogen and organic material were the main reasons for the increase in yield, respectively. Conclusions: The addition of three organic materials can replace 15% of nitrogen fertilizer. It is recommended to apply 153.0 kg·hm−2 and 127.5 kg·hm−2 of nitrogen fertilizer in winter rapeseed and maize seasons, respectively, in the rotation area of Guizhou yellow soil, with the addition of 3000 kg·hm−2 organic materials, most appropriately commercial organic fertilizer.
Funder
National key R&D Program of China: “Establishment and demonstration of chemical fertilizer and pesticide reduction technology model for winter rapeseed in the upper reaches of the Yangtze River”
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction