A Novel Spectral Index for Automatic Canola Mapping by Using Sentinel-2 Imagery

Author:

Tian HaifengORCID,Chen Ting,Li Qiangzi,Mei Qiuyi,Wang Shuai,Yang Mengdan,Wang Yongjiu,Qin YaochenORCID

Abstract

Because canola is a major oilseed crop, accurately determining its planting areas is crucial for ensuring food security and achieving UN 2030 sustainable development goals. However, when canola is extracted using remote-sensing data, winter wheat causes serious interference because it has a similar growth cycle and spectral reflectance characteristics. This interference seriously limits the classification accuracy of canola, especially in mixed planting areas. Here, a novel canola flower index (CFI) is proposed based on the red, green, blue, and near-infrared bands of Sentinel-2 images to improve the accuracy of canola mapping, based on the finding that spectral reflectance of canola on the red and green bands is higher than that of winter wheat during the canola flowering period. To investigate the potential of the CFI for extracting canola, the IsoData, support vector machine (SVM), and random forest (RF) classification methods were used to extract canola based on Sentinel-2 raw images and CFI images. The results show that the average overall accuracy and kappa coefficient based on CFI images were 94.77% and 0.89, respectively, which were 1.05% and 0.02, respectively, higher than those of the Sentinel-2 raw images. Then we found that a threshold of 0.14 on the CFI image could accurately distinguish canola from non-canola vegetation, which provides a solution for automatic mapping of canola. The overall classification accuracy and kappa coefficient of this threshold method were 96.02% and 0.92, which were very similar to those of the SVM and RF methods. Moreover, the advantage of the threshold classification method is that it reduces the dependence on training samples and has good robustness and high classification efficiency. Overall, this study shows that CFI and Sentinel-2 images provide a solution for automatic and accurate canola extraction.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3