Evaluation of Localized Spallation of TBCs via a Combination of Conjugate Heat Transfer Numerical and Experimental Analysis

Author:

Sun Fan1,Jiang Peng1ORCID,Zhang Jianpu2,Chen Yiwen12,Li Dingjun2

Affiliation:

1. State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi’an Jiaotong University, Xi’an 710049, China

2. State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Dongfang Steam Turbine Co., Ltd., Deyang 618000, China

Abstract

To fully realize the potential application of spalled thermal barrier coating systems (TBCs) in gas turbine blades, it is essential to evaluate the service behavior of TBCs and the critical spallation size for safety servicing. For this purpose, the evaluation of the localized spallation of TBCs under high-temperature gas was investigated experimentally and numerically. Thermal insulation experiments and a conjugate heat transfer numerical algorithm were used to clarify the over-temperature phenomenon, temperature distributions, the relevant flow characteristics of the high-temperature gas in the localized spallation region of TBCs, and the influencing mechanisms that consider the spallation width were identified. The results suggested that when the spallation width was less than 10 μm, the temperature in the TBCs did not change due to the weak impression of gas. When the spallation width exceeded the security coefficient of about 3 mm, the TBCs were difficult to service safely due to the impact of high-temperature gas. Furthermore, the concept of an over-temperature coefficient was proposed to describe the over-temperature damage and a nonlinear fitting equation was obtained to reveal and predict the evolution of the over-temperature coefficient. The over-temperature coefficient may serve as a valuable metric in determining the performance degradation of TBCs.

Funder

National Science and Technology Major Project

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3