Experimental and numerical investigation on the thermal and mechanical behaviours of thermal barrier coatings exposed to CMAS corrosion

Author:

Li Dongxu,Jiang Peng,Gao Renheng,Sun Fan,Jin Xiaochao,Fan Xueling

Abstract

AbstractCalcium-magnesium-alumino-silicate (CMAS) corrosion is a critical factor which causes the failure of thermal barrier coating (TBC). CMAS attack significantly alters the temperature and stress fields in TBC, resulting in their delamination or spallation. In this work, the evolution process of TBC prepared by suspension plasma spraying (SPS) under CMAS attack is investigated. The CMAS corrosion leads to the formation of the reaction layer and subsequent bending of TBC. Based on the observations, a corrosion model is proposed to describe the generation and evolution of the reaction layer and bending of TBC. Then, numerical simulations are performed to investigate the corrosion process of free-standing TBC and the complete TBC system under CMAS attack. The corrosion model constructs a bridge for connecting two numerical models. The results show that the CMAS corrosion has a significant influence on the stress field, such as the peak stress, whereas it has little influence on the steady-state temperature field. The peak of stress increases with holding time, which increases the risk of the rupture of TBC. The Mises stress increases nonlinearly along the thick direction of the reaction layer. Furthermore, in the traditional failure zone, such as the interface of the top coat and bond coat, the stress obviously changes during CMAS corrosion.

Publisher

Springer Science and Business Media LLC

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3