Nanopore Structure and Fractal Characteristics of Lacustrine Shale: Implications for Shale Gas Storage and Production Potential

Author:

Chen Lei,Jiang Zhenxue,Jiang Shu,Liu Keyu,Yang Wei,Tan Jingqiang,Gao Fenglin

Abstract

In order to better understand nanopore structure and fractal characteristics of lacustrine shale, nine shale samples from the Da’anzhai Member of Lower Jurassic Ziliujing Formation in the Sichuan Basin, southwestern (SW) China were investigated by total organic carbon (TOC) analysis, X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FE-SEM), and low-pressure N2 adsorption. Two fractal dimensions D1 and D2 (at the relative pressure of 0–0.5 and 0.5–1, respectively) were calculated from N2 adsorption isotherms using the Frenkel–Halsey–Hill (FHH) equation. The pore structure of the Lower Jurassic lacustrine shale was characterized, and the fractal characteristics and their controlling factors were investigated. Then the effect of fractal dimensions on shale gas storage and production potential was discussed. The results indicate that: (1) Pore types in shale are mainly organic-matter (OM) and interparticle (interP) pores, along with a small amount of intraparticle (intraP) pores, and that not all grains of OM have the same porosity. The Brunauer–Emmett–Teller (BET) surface areas of shale samples range from 4.10 to 8.38 m2/g, the density-functional-theory (DFT) pore volumes range from 0.0076 to 0.0128 cm3/g, and average pore diameters range from 5.56 to 10.48 nm. (2) The BET surface area shows a positive correlation with clay minerals content and quartz content, but no obvious relationship with TOC content. The DFT pore volume shows a positive correlation with TOC content and clay minerals content, but a negative relationship with quartz content. In addition, the average pore diameter shows a positive correlation with TOC content and a negative relationship with quartz content, but no obvious relationship with clay minerals content. (3) Fractal dimension D1 is mainly closely associated with the specific surface area of shale, suggesting that D1 may represent the pore surface fractal dimension. Whereas fractal dimension D2 is sensitive to multiple parameters including the specific surface area, pore volume, and average pore diameter, suggesting that D2 may represent the pore structure fractal dimension. (4) Shale with a large fractal dimension D1 and a moderate fractal dimension D2 has a strong capacity to store both adsorbed gas and free gas, and it also facilitates the exploitation and production of shale gas.

Funder

National Science and Technology Major Project of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3