Nanofluidic Study of Multiscale Phase Transitions and Wax Precipitation in Shale Oil Reservoirs

Author:

Lu Zhiyong1,Wan Yunqiang2,Xu Lilong3,Fang Dongliang1,Wu Hua2,Zhong Junjie3ORCID

Affiliation:

1. Jianghan Oilfield Branch of Sinopec Group, Wuhan 430223, China

2. Sinopec Shale Oil and Gas Exploration and Development Key Laboratory, Exploration and Development Research Institute, Sinopec Jianghan Oilfield Company, Wuhan 430223, China

3. State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China

Abstract

During hydraulic fracturing of waxy shale oil reservoirs, the presence of fracturing fluid can influence the phase behavior of the fluid within the reservoir, and heat exchange between the fluids causes wax precipitation that impacts reservoir development. To investigate multiscale fluid phase transition and microscale flow impacted by fracturing fluid injection, this study conducted no-water phase behavior experiments, water injection wax precipitation experiments, and water-condition phase behavior experiments using a nanofluidic chip model. The results show that in the no-water phase experiment, the gasification occurred first in the large cracks, while the matrix throat was the last, and the bubble point pressure difference between the two was 12.1 MPa. The wax precipitation phenomena during fracturing fluid injection can be divided into granular wax in cracks, flake wax in cracks, and wax precipitation in the matrix throat, and the wax mainly accumulated in the microcracks and remained in the form of particles. Compared with the no-water conditions, the large cracks and matrix throat bubble point in the water conditions decreased by 6.1 MPa and 3.5 MPa, respectively, and the presence of the water phase reduced the material occupancy ratio at each pore scale. For the smallest matrix throat, the final gas occupancy ratio under the water conditions decreased from 32% to 24% in the experiment without water. This study provides valuable insight into reservoir fracture modification and guidance for the efficient development of similar reservoirs.

Funder

National Natural Science Foundation of China

Excellent Young Scholars of Shandong Province

Guanghua Scholars of China University of Petroleum

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3