Abstract
In this work, temperature-dependent transient threshold voltage (VT) instability behaviors in p-GaN/AlGaN/GaN HEMTs, with both Schottky gate (SG) and Ohmic gate (OG), were investigated systematically, under negative gate bias stress, by a fast voltage sweeping method. For SG devices, a concave-shaped VT evolution gradually occurs with the increase in temperature, and the concave peak appears faster with increasing reverse bias stress, followed by a corresponding convex-shaped VT recovery process. In contrast, the concave-shaped VT evolution for OG devices that occurred at room temperature gradually disappears in the opposite shifting direction with the increasing temperature, but the corresponding convex-shaped VT recovery process is not observed, substituted, instead, with a quick and monotonic recovery process to the initial state. To explain these interesting and different phenomena, we proposed physical mechanisms of time and temperature-dependent hole trapping, releasing, and transport, in terms of the discrepancies in barrier height and space charge region, at the metal/p-GaN junction between SG and OG HEMTs.
Funder
National Natural Science Foundation of China
NSAF
State Key R&D project of Jiangsu
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献