Impact of the Manufacturing Processes of Aromatic-Polymer-Based Carbon Fiber on Life Cycle Greenhouse Gas Emissions

Author:

Sakamoto Kaito,Kawajiri KotaroORCID,Hatori Hiroaki,Tahara Kiyotaka

Abstract

Carbon fibers (CFs) are promising lightweight materials to reduce vehicle fuel consumption. However, the most widely used polyacrylonitrile (PAN)-based CF production process consumes a considerable amount of energy. A novel production process for CFs from aromatic polymers (APs) is proposed as an alternative. In this study, the greenhouse gas (GHG) emissions from PAN-based CFs, from APs using the classical benzidine method, and from APs using the coupling method on a cradle-to-gate basis, were analyzed. The results indicate that the AP CFs with the classical benzidine method generated 11% fewer GHG emissions compared with the conventional PAN CFs. Emissions were further reduced by 42% using a large-tow production process. As the classical benzidine method for manufacturing CFs from APs uses a monomer synthesized via benzidine, which is carcinogenic, we examined a different synthetic route using the coupling method for monomer synthesis to avoid the benzidine intermediate. The GHG emissions from the AP CFs manufactured by the coupling method showed a 51% increase compared with PAN-based CFs, indicating a trade-off between GHG emissions and carcinogenicity. However, with proper chemical management, the classical method of CF manufacturing from APs via benzidine showed reduced GHG emissions.

Funder

New Energy and Industrial Technology Development Organization

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference37 articles.

1. The Intergovernmental Panel on Climate Change, Transporthttps://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter8.pdf

2. Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration

3. Interactive optimization of the resin transfer molding using a general-purpose tool: a case study

4. Lifecycle assessment of automotive hoods made of aluminum alloy and glass mat reinforced thermoplastic;Liu;J. Hefei Univ. Technol.,2012

5. A Comparative Life Cycle Assessment of Magnesium Front End Autoparts;Dubreuil,2010

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3