Author:
Yang Daliang,Yin Li,Xu Shengguang,Wu Ning
Abstract
The conventional control method for a single-phase cascaded H-bridge (CHB) multilevel converter is vector (dq) control; however, dq control requires complicated calculations and additional time delays. This paper presents a novel power control strategy for the CHB multilevel converter. A power-based dc-link voltage balance control is also proposed for unbalanced load conditions. The new control method is designed in a virtual αβ stationary reference frame without coordinate transformation or phase-locked loop (PLL) to avoid the potential issues related to computational complexity. Because only imaginary voltage construction is needed in the proposed control method, the time delay from conventional imaginary current construction can be eliminated. The proposed method can obtain a sinusoidal grid current waveform with unity power factor. Compared with the conventional dq control method, the power control strategy possesses the advantage of a fast dynamic response. The stability of the closed-loop system with the dc-link voltage balance controller is evaluated. Simulation and experimental results are presented to verify the accuracy of the proposed power and voltage control method.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献