An Improved PLL-Based Speed Estimation Method for Induction Motors through Harmonic Separation

Author:

Yu Jie,Zhang Youjun,Zheng Xiaoqin

Abstract

The real-time speed estimation of induction motors (IMs) is important for the motors’ state monitoring and control. The utilization of rotor slot harmonics (RSHs) due to the inherent cogging effect is regarded as a promising way to realize the speed estimation of IMs. The key to the RSH-based speed estimation method is how to accurately and quickly identify the frequency of an RSH signal. However, as the RSH signal always consists of two side-frequency components that are adjacent to each other, it is actually improper to directly use the conventional phase-locked loop (PLL) method designed for single-frequency tracking. Furthermore, the form of the two side components in the frequency domain also leads to a significant amplitude fluctuation in the time-domain waveform of RSHs, thus resulting in the obvious frequency tracking errors of the conventional PLL method. In this paper, we proposed an improved PLL through harmonic separation to further improve the performance of the RSH-based speed estimation method of multiphase IMs, so that the dynamic tracking errors of PLL due to the reasons mentioned above can be significantly reduced. Simulations and experiments in a wide speed range were also performed, with their results presented as verifications of the proposed method.

Funder

Natural Science Foundation of Shandong Province

Key Project of Innovative Teaching Laboratory of Qingdao University in 2020

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online Efficiency Prediction of Induction Motor using Model Reference Adaptvie Method;2022 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific);2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3