Prediction of Combustion and Heat Release Rates in Non-Premixed Syngas Jet Flames Using Finite-Rate Scale Similarity Based Combustion Models

Author:

Shamooni AliORCID,Cuoci Alberto,Faravelli Tiziano,Sadiki Amsini

Abstract

Generating energy from combustion is prone to pollutant formation. In energy systems working under non-premixed combustion mode, rapid mixing is required to increase the heat release rates. However, local extinction and re-ignition may occur, resulting from strong turbulence–chemistry interaction, especially when rates of mixing exceed combustion rates, causing harmful emissions and flame instability. Since the physical mechanisms for such processes are not well understood, there are not yet combustion models in large eddy simulation (LES) context capable of accurately predicting them. In the present study, finite-rate scale similarity (SS) combustion models were applied to evaluate both heat release and combustion rates. The performance of three SS models was a priori assessed based on the direct numerical simulation of a temporally evolving syngas jet flame experiencing high level of local extinction and re-ignition. The results show that SS models following the Bardina’s “grid filtering” approach (A and B) have lower errors than the model based on the Germano’s “test filtering” approach (C), in terms of mean, root mean square (RMS), and local errors. In mean, both Bardina’s based models capture well the filtered combustion and heat release rates. Locally, Model A captures better major species, while Model B retrieves radicals more accurately.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3