Abstract
AbstractIn this work, recently developed finite-rate dynamic scale similarity (SS) sub-grid scale (SGS) combustion models have been a priori assessed and compared with the Eddy Dissipation Concept (EDC) and “no model” approaches based on a Direct Numerical Simulation (DNS) database of a temporally evolving non-premixed jet flame. Two different filter widths, one placed in the inertial range and the other in the near dissipation range, have been used. The analyses were carried out in two time instants corresponding to instants of maximum local extinction and re-ignition. Conditional averaged filtered chemical source terms, conditioned on different parameters in the composition space, have been presented. Improvements are observed using the dynamic SS models compared to the two other approaches in the prediction of filtered chemical source terms of individual species while using larger filter widths. However, discrepancies still exists using the dynamic SS model on the turbulent/non-turbulent interfaces of the jet, mainly in the prediction of the oxidizer consumption rate.
Funder
H2020 Marie Sklodowska-Curie Actions
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献