Abstract
A brain-computer interface (BCI) translates a user’s thoughts such as motor imagery (MI) into the control of external devices. However, some people, who are defined as BCI illiteracy, cannot control BCI effectively. The main characteristics of BCI illiterate subjects are low classification rates and poor repeatability. To address the problem of MI-BCI illiteracy, we propose a distribution adaptation method based on multi-kernel learning to make the distribution of features between the source domain and target domain become even closer to each other, while the divisibility of categories is maximized. Inspired by the kernel trick, we adopted a multiple-kernel-based extreme learning machine to train the labeled source-domain data to find a new high-dimensional subspace that maximizes data divisibility, and then use multiple-kernel-based maximum mean discrepancy to conduct distribution adaptation to eliminate the difference in feature distribution between domains in the new subspace. In light of the high dimension of features of MI-BCI illiteracy, random forest, which can effectively handle high-dimensional features without additional cross-validation, was employed as a classifier. The proposed method was validated on an open dataset. The experimental results show that that the method we proposed suits MI-BCI illiteracy and can reduce the inter-domain differences, resulting in a reduction in the performance degradation of both cross-subjects and cross-sessions.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Sci-tech Innovation Foundation of Harbin
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献