Posthoc Interpretability of Neural Responses by Grouping Subject Motor Imagery Skills Using CNN-Based Connectivity

Author:

Collazos-Huertas Diego Fabian1ORCID,Álvarez-Meza Andrés Marino1ORCID,Cárdenas-Peña David Augusto2ORCID,Castaño-Duque Germán Albeiro3ORCID,Castellanos-Domínguez César Germán1ORCID

Affiliation:

1. Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170003, Colombia

2. Automatics Research Group, Universidad Tecnológica de Pereria, Pereira 660003, Colombia

3. Cultura de la Calidad en la Educación Research Group, Universidad Nacional de Colombia, Manizales 170003, Colombia

Abstract

Motor Imagery (MI) refers to imagining the mental representation of motor movements without overt motor activity, enhancing physical action execution and neural plasticity with potential applications in medical and professional fields like rehabilitation and education. Currently, the most promising approach for implementing the MI paradigm is the Brain-Computer Interface (BCI), which uses Electroencephalogram (EEG) sensors to detect brain activity. However, MI-BCI control depends on a synergy between user skills and EEG signal analysis. Thus, decoding brain neural responses recorded by scalp electrodes poses still challenging due to substantial limitations, such as non-stationarity and poor spatial resolution. Also, an estimated third of people need more skills to accurately perform MI tasks, leading to underperforming MI-BCI systems. As a strategy to deal with BCI-Inefficiency, this study identifies subjects with poor motor performance at the early stages of BCI training by assessing and interpreting the neural responses elicited by MI across the evaluated subject set. Using connectivity features extracted from class activation maps, we propose a Convolutional Neural Network-based framework for learning relevant information from high-dimensional dynamical data to distinguish between MI tasks while preserving the post-hoc interpretability of neural responses. Two approaches deal with inter/intra-subject variability of MI EEG data: (a) Extracting functional connectivity from spatiotemporal class activation maps through a novel kernel-based cross-spectral distribution estimator, (b) Clustering the subjects according to their achieved classifier accuracy, aiming to find common and discriminative patterns of motor skills. According to the validation results obtained on a bi-class database, an average accuracy enhancement of 10% is achieved compared to the baseline EEGNet approach, reducing the number of “poor skill” subjects from 40% to 20%. Overall, the proposed method can be used to help explain brain neural responses even in subjects with deficient MI skills, who have neural responses with high variability and poor EEG-BCI performance.

Funder

PROGRAMA DE INVESTIGACIÓN RECONSTRUCCIÓN DEL TEJIDO SOCIAL EN ZONAS DE POSCONFLICTO EN COLOMBIA Código SIGP

Código

Colombia Científica

Universidad Nacional de Colombia and Universidad de Caldas

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3