Improving Fatigue Limit and Rendering Defects Harmless through Laser Peening in Additive-Manufactured Maraging Steel

Author:

Tsuchiya Shiori,Takahashi KojiORCID

Abstract

Additive-manufactured metals have a low fatigue limit due to the defects formed during the manufacturing process. Surface defects, in particular, considerably degrade the fatigue limit. In order to expand the application range of additive-manufactured metals, it is necessary to improve the fatigue limit and render the surface defects harmless. This study aims to investigate the effect of laser peening (LP) on the fatigue strength of additive-manufactured maraging steel with crack-like surface defects. Semicircular surface slits with depths of 0.2 and 0.6 mm are introduced on the specimen surface, and plane bending-fatigue tests are performed. On LP application, compressive residual stress is introduced from the specimen surface to a depth of 0.7 mm and the fatigue limit increases by 114%. In a specimen with a 0.2 mm deep slit, LP results in a high-fatigue-limit equivalent to that of a smooth specimen. Therefore, a semicircular slit with a depth of 0.2 mm can be rendered harmless by LP in terms of the fatigue limit. The defect size of a 0.2 mm deep semicircular slit is greater than that of the largest defect induced by additive manufacturing (AM). Thus, the LP process can contribute to improving the reliability of additive-manufactured metals. Compressive residual stress is the dominant factor in improving fatigue strength and rendering surface defects harmless. Moreover, the trend of the defect size that can be rendered harmless, estimated based on fracture mechanics, is consistent with the experimental results.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3