Effect of scanning strategy and laser peening on microstructure and fatigue properties of laser-directed energy deposition-built 15-5 PH stainless steel

Author:

Pandey Susheel,Srivastava Rajeev,Paul Christ Prakash,Rai Arun Kumar,Narain Rakesh

Abstract

Purpose The aim of this paper is to study the effect of laser shock peening (LSP) on mechanical behaviour of the laser-directed energy deposition (LDED)-based printed 15-5 PH stainless steel with U and V notches. The study specifically concentrates on the evaluation of effect of scan strategy, machining and LSP processing on microstructural, texture evolution and fatigue behaviour of LDED-printed 15-5 PH steel. Design/methodology/approach For LSP treatment, 15-5 PH steel was printed using LDED process with bidirectional scanning strategy (XX [θ = 0°) and XY [θ = 90°]) at optimised laser power of 600 W with a scanning speed of 300 mm/min and a powder feed rate of 3 g/min. Furthermore, LSP treatment was conducted on the V- and U-notched fatigue specimens extracted from LDED-built samples at laser energy of 3.5 J with a pulse width of 10 ns using laser spot diameter of 3 mm. Post to the LSP treatment, the surface roughness, fatigue life assessment and microstructural evolution analysis is performed. For this, different advanced characterisation techniques are used, such as scanning electron microscopy attached with electron backscatter diffraction for microstructure and texture, X-ray diffraction for residual stress (RS) and structure information, Vicker’s hardness tester for microhardness and universal testing machine for low-cycle fatigue. Findings It is observed that both scanning strategies during the LDED printing of 15-5 PH steel and laser peening have played significant role in fatigue life. Specimens with the XY printing strategy shows higher fatigue life as compared to XX with both U- and V-notched conditions. Furthermore, machining and LSP treatment led to a significant improvement of fatigue life for both scanning strategies with U and V notches. The extent of increase in fatigue life for both XX and XY scanning strategy with V notch is found to be higher than U notch after LSP treatment, though without LSP samples with U notch have a higher fatigue life. As fabricated sample is found to have the lowest fatigue life as compared to machines and laser peened with both scan strategies. Originality/value This study presents an innovative method to improve the fatigue life of 15-5 PH stainless steel by changing the microstructure, texture and RS with the adoption of a suitable scanning strategy, machining and LSP treatment as post-processing. The combination of preferred microstructure and compressive RS in LDED-printed 15-5 PH stainless steel achieved with a synergy between microstructure and RS, which is responsible to improve the fatigue life. This can be adopted for the futuristic application of LDED-printed 15-5 PH stainless steel for different applications in aerospace and other industries. Graphical abstract

Publisher

Emerald

Reference70 articles.

1. Improving the fatigue behaviour of a selectively laser melted aluminium alloy: influence of heat treatment and surface quality;Materials & Design,2016

2. Microstructure and mechanical properties of direct metal laser – sintered 15-5PH steel with different solution annealing heat treatments;The International Journal of Advanced Manufacturing Technology,2019

3. Experimental and numerical studies on dynamic crack growth in layered slate rock under wedge impact loads: part II – non-plane strain problem;Fatigue and Fracture of Engineering Materials and Structures,2007

4. Additive manufacturing of Ti–6Al–4V parts through laser metal deposition (LMD): process, microstructure, and mechanical properties;Journal of Alloys and Compounds, Elsevier B.V,2019

5. Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts;International Journal of Fatigue,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3