Abstract
The intergranular corrosion susceptibility of ferritic stainless-steel weldments is strongly dependent on chromium carbide precipitation phenomena. Hence, stabilization is widely used to mitigate the aforementioned precipitation. In contrast, stabilization has proved ineffective to fully prevent intergranular corrosion due to segregation of unreacted chromium during solid-state heat-treatments. To analyze the precipitation behavior of 17 wt.-% chromium ferritic stainless steels during laser welding, sheets of unstabilized and titanium-stabilized ferritic stainless steels were welded in a butt joint configuration and characterized with special consideration of precipitation behavior by means of transmission electron microscopy. While unstabilized ferritic stainless steels exhibit pronounced chromium precipitate formation at grain boundaries, titanium-stabilization leads to titanium precipitates without adjacent chromium segregation. However, corrosion tests reveal three distinctive corrosion mechanisms within the investigated ferritic stainless steels based on their inherent precipitation behaviors. In light of the precipitation formation, it is evident that immersion in sulfuric acid media leads to the dissolution of either grain boundaries or the grain boundary vicinity. As a result, the residual mechanical strength of the joint is substantially degraded.
Funder
German Association of Joint Industrial Applied Research Institutes
European Regional Development Fund ERDF
Subject
General Materials Science,Metals and Alloys
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献