Grain growth and precipitation behaviour of AISI 430 ferritic stainless steel subjected to pulsed laser beam welding using free-form pulse shaping

Author:

Sommer N.ORCID,Stredak F.,Wiegand M.ORCID,Böhm S.ORCID

Abstract

AbstractFerritic stainless steels are prone to grain coarsening and precipitation of chromium-rich grain boundary phases during fusion welding, which increase intergranular corrosion susceptibility. State-of-the-art techniques to overcome these challenges mainly feature heterogeneous nucleating agents with regard to grain coarsening or alternating alloy concepts as well as post-weld heat treatments as for restoration of intergranular corrosion resistance. The present investigation seeks to depart from these traditional approaches through the use of a tailored heat input during pulsed laser beam welding by means of free-form pulse shaping. Grain size analysis using electron backscatter diffraction shows a substantial reduction of grain size as compared to continuous-wave lasers due to a distinctive columnar to equiaxed transition. Moreover, phase analyses reveal the overcoming of chromium carbide precipitation within the heat-affected zone. As corrosion tests demonstrate, intergranular attack is therefore concentrated on the weld metal. In comparison to continuous-wave laser beam welding, intergranular corrosion susceptibility is substantially reduced for very short pulse durations. From these results, it can be derived that pulsed laser beam welding using free-form pulse shaping enables direct control of heat input and, thus, tailored grain growth and precipitation formation properties.

Funder

Universität Kassel

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3