Author:
Shu Liang,Zhang Haigen,You Yingmin,Cui Yonghao,Chen Wei
Abstract
To improve fire prediction accuracy over existing methods, a double weighted naive Bayes with compensation coefficient (DWCNB) method is proposed for fire prediction purposes. The fire characteristic attributes and attribute values are all weighted to weaken the assumption that the naive Bayes attributes are independent and equally important. A compensation coefficient was used to compensate for the prior probability, and a five-level orthogonal testing method was employed to properly design the coefficient. The proposed model was trained with data collected from the National Institute of Standards and Technology (NIST) fire database. Simulation comparisons show that the average prediction accuracy of the proposed method is 98.13%, which is 5.08% and 2.52% higher than the methods of naive Bayes (NB) and double weighted naive Bayes (DWNB), respectively. The experimental results show that the average accuracies of the DWCNB method for test fire and interference sources were 97.76% and 98.24%. Prediction accuracies were 5.06% and 3.74% higher than those of the NB and DWNB methods.
Funder
National Natural Science Foundation of China
Zhejiang public welfare technology research plan
Department of Education of Zhejiang Province
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献