Surface Topography Model of Ultra-High Strength Steel AF1410 Based on Dynamic Characteristics of Milling System

Author:

Xu Jin12,Yan Fuwu1,Wan Xiaojin1,Li Yan2ORCID,Zhu Qiang3

Affiliation:

1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, China

2. Engineering Training Center, Xi’an University of Technology, No. 5 South Jinhua Road, Xi’an 710048, China

3. School of Mechatronic Engineering, Xi’an Technological University, No. 2 Xuefu Middle Road, Weiyang District, Xi’an 710021, China

Abstract

AF1410 is a low carbon high alloy ultra-high strength steel. It not only has high strength and high toughness, but also has a high stress corrosion resistance. However, due to the characteristics of hard quality and poor thermal conductivity, AF1410 is a difficult material to process. In the process of milling, the geometric factors of process parameters, the flexible deformation of milling cutter and the flutter of the process system all affect the surface roughness, which makes it difficult to predict the surface roughness of milling parts. In order to solve this problem, a prediction model for surface topography of ultrahigh strength steel AF1410 was studied. To solve this problem, this paper studies the formation of milling surface topography, considers the dynamic displacement of the milling system, proposes a modeling method of surface topography based on the dynamic characteristics of the milling system and forms a prediction model. On this basis, the surface topography of ultra-high strength steel is simulated and analyzed, and the accuracy of the model is verified by experiments. The study realizes the prediction of milling surface topography of AF1410 parts and reveals the formation mechanism of milling surface topography from geometric and physical perspectives.

Funder

Innovation and Intelligence Base of New Energy Automobile Science and key Technology 111 Project

State Administration of Foreign Experts Affairs, Ministry of Education

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3