Milling Surface Roughness Prediction Based on Physics-Informed Machine Learning

Author:

Zeng Shi1,Pi Dechang1

Affiliation:

1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Surface roughness is a key indicator of the quality of mechanical products, which can precisely portray the fatigue strength, wear resistance, surface hardness and other properties of the products. The convergence of current machine-learning-based surface roughness prediction methods to local minima may lead to poor model generalization or results that violate existing physical laws. Therefore, this paper combined physical knowledge with deep learning to propose a physics-informed deep learning method (PIDL) for milling surface roughness predictions under the constraints of physical laws. This method introduced physical knowledge in the input phase and training phase of deep learning. Data augmentation was performed on the limited experimental data by constructing surface roughness mechanism models with tolerable accuracy prior to training. In the training, a physically guided loss function was constructed to guide the training process of the model with physical knowledge. Considering the excellent feature extraction capability of convolutional neural networks (CNNs) and gated recurrent units (GRUs) in the spatial and temporal scales, a CNN–GRU model was adopted as the main model for milling surface roughness predictions. Meanwhile, a bi-directional gated recurrent unit and a multi-headed self-attentive mechanism were introduced to enhance data correlation. In this paper, surface roughness prediction experiments were conducted on the open-source datasets S45C and GAMHE 5.0. In comparison with the results of state-of-the-art methods, the proposed model has the highest prediction accuracy on both datasets, and the mean absolute percentage error on the test set was reduced by 3.029% on average compared to the best comparison method. Physical-model-guided machine learning prediction methods may be a future pathway for machine learning evolution.

Funder

NUAA

New Generation Artificial Intelligence

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3