Three-Parameter P-S-N Curve Fitting Based on Improved Maximum Likelihood Estimation Method

Author:

Tan Xiufeng1ORCID,Li Qiang1,Wang Guanqin1,Xie Kai2ORCID

Affiliation:

1. University Featured Laboratory of Materials Engineering for Agricultural Machinery of Shandong Province, Weifang University of Science and Technology, Shouguang 262700, China

2. School of Intelligent Manufacturing, Weifang University of Science and Technology, Shouguang 262700, China

Abstract

The P-S-N curve is a vital tool for dealing with fatigue life analysis, and its fitting under the condition of small samples is always concerned. In the view that the three parameters of the P-S-N curve equation can better describe the relationship between stress and fatigue life in the middle- and long-life range, this paper proposes an improved maximum likelihood method (IMLM). The backward statistical inference method (BSIM) recently proposed has been proven to be a good solution to the two-parameter P-S-N curve fitting problem under the condition of small samples. Because of the addition of an unknown parameter, the problem exists in the search for the optimal solution to the three-parameter P-S-N curve fitting. Considering that the maximum likelihood estimation is a commonly used P-S-N curve fitting method, and the rationality of its search for the optimal solution is better than that of BSIM, a new method combining BSIM and the maximum likelihood estimation is proposed. In addition to the BSIM advantage of expanding the sample information, the IMLM also has the advantage of more reasonable optimal solution search criteria, which improves the disadvantage of BSIM in parameter search. Finally, through the simulation tests and the fatigue test, the P-S-N curve fitting was carried out by using the traditional group method (GM), BSIM, and IMLM, respectively. The results show that the IMLM has the highest fitting accuracy. A test arrangement method is proposed accordingly.

Funder

High-level Personnel Scientific Research Start-up Fund Project of Weifang University of Science and Technology

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on fatigue life evaluation method of shaft parts based on small sample;International Journal of Structural Integrity;2023-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3