Research on fatigue life evaluation method of shaft parts based on small sample

Author:

Liu JianhuiORCID,Zhang ZiyangORCID,Zhu LongxiangORCID,Wang JieORCID,He YingbaoORCID

Abstract

PurposeDue to the limitation of experimental conditions and budget, fatigue data of mechanical components are often scarce in practical engineering, which leads to low reliability of fatigue data and reduces the accuracy of fatigue life prediction. Therefore, this study aims to expand the available fatigue data and verify its reliability, enabling the achievement of life prediction analysis at different stress levels.Design/methodology/approachFirst, the principle of fatigue life probability percentiles consistency and the perturbation optimization technique is used to realize the equivalent conversion of small samples fatigue life test data at different stress levels. Meanwhile, checking failure model by fitting the goodness of fit test and proposing a Monte Carlo method based on the data distribution characteristics and a numerical simulation strategy of directional sampling is used to extend equivalent data. Furthermore, the relationship between effective stress and characteristic life is analyzed using a combination of the Weibull distribution and the Stromeyer equation. An iterative sequence is established to obtain predicted life.FindingsThe TC4–DT titanium alloy is selected to assess the accuracy and reliability of the proposed method and the results show that predicted life obtained with the proposed method is within the double dispersion band, indicating high accuracy.Originality/valueThe purpose of this study is to provide a reference for the expansion of small sample fatigue test data, verification of data reliability and prediction of fatigue life data. In addition, the proposed method provides a theoretical basis for engineering applications.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference54 articles.

1. Fatigue life-based reliability assessment of a heavy vehicle leaf spring;International Journal of Structural Integrity,2019

2. Fatigue life prediction of composite materials using polynomial classifiers and recurrent neural networks;Composite Structures,2007

3. Fatigue life reliability prediction of a stub axle using Monte Carlo simulation;International Journal of Automotive Technology,2011

4. Fatigue probability evaluation method based on the principle of sample-polymerization;Journal of Mechanical Engineering,2016

5. Probabilistic S-N fields based on statistical distributions applied to metallic and composite materials: state of the art;Advances in Mechanical Engineering,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3