Human Basal and Suprabasal Keratinocytes Are Both Able to Generate and Maintain Dermo–Epidermal Skin Substitutes in Long-Term In Vivo Experiments

Author:

Pontiggia LucaORCID,Ahuja Akshay KumarORCID,Yosef Hesham KamaleldinORCID,Rütsche DominicORCID,Reichmann Ernst,Moehrlen Ueli,Biedermann ThomasORCID

Abstract

The basal layer of human interfollicular epidermis has been described to harbour both quiescent keratinocyte stem cells and a transit amplifying cell population that maintains the suprabasal epidermal layers. We performed immunofluorescence analyses and revealed that the main proliferative keratinocyte pool in vivo resides suprabasally. We isolated from the human epidermis two distinct cell populations, the basal and the suprabasal keratinocytes, according to the expression of integrin β4 (iβ4). We compared basal iβ4+ or suprabasal iβ4− keratinocytes with respect to their proliferation and colony-forming ability and their Raman spectral properties. In addition, we generated dermo–epidermal substitutes using freshly isolated and sorted basal iβ4+ or suprabasal iβ4− keratinocytes and transplanted them on immuno-compromised rats. We show that suprabasal iβ4− keratinocytes acquire a similar proliferative capacity as basal iβ4+ keratinocytes after two weeks of culture in vitro, with expression of high levels of iβ4 and downregulation of K10 expression. In addition, both basal iβ4+ and suprabasal iβ4− keratinocytes acquire authentic self-renewing properties during the in vitro 3D-culture phase and are able to generate and maintain a fully stratified epidermis for 16 weeks in vivo. Therefore, against the leading dogma, we propose that human suprabasal keratinocytes can retro-differentiate into true basal stem cells in a wound situation and/or when in contact with the basement membrane.

Funder

Swiss National Science Foundation

University Medicine Zurich

Fondation Gaydoul

Publisher

MDPI AG

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3